from IPython.display import display, Markdown, clear_output
from pprint import pprint
Tool loop
' '.join(models)
'gpt-5 gpt-5-mini gpt-5-nano o1-preview o1-mini gpt-4o gpt-4o-mini gpt-4-turbo gpt-4 gpt-4-32k gpt-3.5-turbo gpt-3.5-turbo-instruct o1 o3-mini chatgpt-4o-latest o1-pro o3 o4-mini gpt-4.1 gpt-4.1-mini gpt-4.1-nano'
= models[1]
model model
'gpt-5-mini'
Sample Data
def _get_orders_customers():
= {
orders "O1": dict(id="O1", product="Widget A", quantity=2, price=19.99, status="Shipped"),
"O2": dict(id="O2", product="Gadget B", quantity=1, price=49.99, status="Processing"),
"O3": dict(id="O3", product="Gadget B", quantity=2, price=49.99, status="Shipped")}
= {
customers "C1": dict(name="John Doe", email="john@example.com", phone="123-456-7890",
=[orders['O1'], orders['O2']]),
orders"C2": dict(name="Jane Smith", email="jane@example.com", phone="987-654-3210",
=[orders['O3']])
orders
}return orders, customers
= _get_orders_customers() orders, customers
def get_customer_info(
str # ID of the customer
customer_id:# Customer's name, email, phone number, and list of orders
): "Retrieves a customer's information and their orders based on the customer ID"
print(f'- Retrieving customer {customer_id}')
return customers.get(customer_id, "Customer not found")
def get_order_details(
str # ID of the order
order_id:# Order's ID, product name, quantity, price, and order status
): "Retrieves the details of a specific order based on the order ID"
print(f'- Retrieving order {order_id}')
return orders.get(order_id, "Order not found")
def cancel_order(
str # ID of the order to cancel
order_id:->bool: # True if the cancellation is successful
)"Cancels an order based on the provided order ID"
print(f'- Cancelling order {order_id}')
if order_id not in orders: return False
'status'] = 'Cancelled'
orders[order_id][return True
= dict(
chatkw ={ "verbosity": "low" },
text={ "effort": "minimal" }
reasoning )
= [get_customer_info, get_order_details, cancel_order]
tools = Chat(model, tools=tools, **chatkw) chat
= chat('Hi.')
r r
Hello! How can I help you today?
- id: resp_6897e0de4c348190bf1946e354518b8b0c0dd261ca702a77
- created_at: 1754783966.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseReasoningItem(id=‘rs_6897e0def4188190ac0593dbdac886be0c0dd261ca702a77’, summary=[], type=‘reasoning’, content=None, encrypted_content=None, status=None), ResponseOutputMessage(id=‘msg_6897e0df0d088190954040dcc2c7f18c0c0dd261ca702a77’, content=[ResponseOutputText(annotations=[], text=‘Hello! How can I help you today?’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘get_customer_info’, parameters={‘type’: ‘object’, ‘properties’: {‘customer_id’: {‘type’: ‘string’, ‘description’: ‘ID of the customer’}}, ‘required’: [‘customer_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=“Retrieves a customer’s information and their orders based on the customer ID”), FunctionTool(name=‘get_order_details’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Retrieves the details of a specific order based on the order ID’), FunctionTool(name=‘cancel_order’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order to cancel’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Cancels an order based on the provided order ID:- type: boolean’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘minimal’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘low’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=136, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=15, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=151)
- user: None
- store: True
= chat('Can you tell me the email address for customer C2?')
r r.output
- Retrieving customer C2
[ResponseReasoningItem(id='rs_6897e0f0949c8190af24da7373614a300c0dd261ca702a77', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"customer_id":"C2"}', call_id='call_7qPUHLapCRWKcPqdoFkRYChc', name='get_customer_info', type='function_call', id='fc_6897e0f0c5248190b17036339c4be62a0c0dd261ca702a77', status='completed')]
= chat()
r r.output
[ResponseOutputMessage(id='msg_6897e0f5a8b48190b648cb12f43898240c0dd261ca702a77', content=[ResponseOutputText(annotations=[], text='The email for customer C2 is jane@example.com.', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')]
= Chat(model, tools=tools)
chat = chat('Please cancel all orders for customer C1 for me.')
r r.output
- Retrieving customer C1
[ResponseReasoningItem(id='rs_6897e0f99ddc8191b8f2fafa74dc06d40913d9b020597909', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"customer_id":"C1"}', call_id='call_LwrqtbAyvJshnZo2a6MIG8GK', name='get_customer_info', type='function_call', id='fc_6897e0fb1f648191b15ad2d73156e6260913d9b020597909', status='completed')]
= chat()
r r.output
- Cancelling order O1
- Cancelling order O2
[ResponseReasoningItem(id='rs_6897e0fd41e0819189fc599d98d476280913d9b020597909', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"order_id":"O1"}', call_id='call_q8Xfu230VPo7EtebReDFkXQW', name='cancel_order', type='function_call', id='fc_6897e0fec5fc8191989ee1c6f5456bf90913d9b020597909', status='completed'),
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_eyVUvcqHfbLPdRluohRibIC1', name='cancel_order', type='function_call', id='fc_6897e0fee2c48191be1350e29034816a0913d9b020597909', status='completed')]
toolloop
implementation
Chat.toolloop
Chat.toolloop (pr, max_steps=10, cont_func:<built- infunctioncallable>=<function noop>, final_prompt='You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed.', stream:bool=False, tools=None, tool_choice=None, background:Optional[bool]|NotGiven=NOT_GIVEN, include:Opti onal[List[ResponseIncludable]]|NotGiven=NOT_GIVEN, input:Union[str,ResponseInputParam]|NotGiven=NOT_GIVEN, instructions:Optional[str]|NotGiven=NOT_GIVEN, max_output_tokens:Optional[int]|NotGiven=NOT_GIVEN, max_tool_calls:Optional[int]|NotGiven=NOT_GIVEN, metadata:Optional[Metadata]|NotGiven=NOT_GIVEN, model:ResponsesModel|NotGiven=NOT_GIVEN, parallel_tool_calls:Optional[bool]|NotGiven=NOT_GIVEN, previous_response_id:Optional[str]|NotGiven=NOT_GIVEN, prompt:Optional[ResponsePromptParam]|NotGiven=NOT_GIVEN, prompt_cache_key:str|NotGiven=NOT_GIVEN, reasoning:Optional[Reasoning]|NotGiven=NOT_GIVEN, safety_identifier:str|NotGiven=NOT_GIVEN, service_tier:"Op tional[Literal['auto','default','flex','scale','priority'] ]|NotGiven"=NOT_GIVEN, store:Optional[bool]|NotGiven=NOT_GIVEN, stream_options:Op tional[response_create_params.StreamOptions]|NotGiven=NOT_ GIVEN, temperature:Optional[float]|NotGiven=NOT_GIVEN, text:ResponseTextConfigParam|NotGiven=NOT_GIVEN, top_logprobs:Optional[int]|NotGiven=NOT_GIVEN, top_p:Optional[float]|NotGiven=NOT_GIVEN, truncation:"Opti onal[Literal['auto','disabled']]|NotGiven"=NOT_GIVEN, user:str|NotGiven=NOT_GIVEN, extra_headers:Headers|None=None, extra_query:Query|None=None, extra_body:Body|None=None, timeout:float|httpx.Timeout|None|NotGiven=NOT_GIVEN)
Add prompt pr
to dialog and get a response from Claude, automatically following up with tool_use
messages
Type | Default | Details | |
---|---|---|---|
pr | Prompt to pass to Claude | ||
max_steps | int | 10 | Maximum number of tool requests to loop through |
cont_func | callable | noop | Function that stops loop if returns False |
final_prompt | str | You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed. | Prompt to add if last message is a tool call |
stream | bool | False | Stream response? |
tools | NoneType | None | Tools to use |
tool_choice | NoneType | None | Required tools to use |
background | Optional[bool] | NotGiven | NOT_GIVEN | |
include | Optional[List[ResponseIncludable]] | NotGiven | NOT_GIVEN | |
input | Union[str, ResponseInputParam] | NotGiven | NOT_GIVEN | |
instructions | Optional[str] | NotGiven | NOT_GIVEN | |
max_output_tokens | Optional[int] | NotGiven | NOT_GIVEN | |
max_tool_calls | Optional[int] | NotGiven | NOT_GIVEN | |
metadata | Optional[Metadata] | NotGiven | NOT_GIVEN | |
model | ResponsesModel | NotGiven | NOT_GIVEN | |
parallel_tool_calls | Optional[bool] | NotGiven | NOT_GIVEN | |
previous_response_id | Optional[str] | NotGiven | NOT_GIVEN | |
prompt | Optional[ResponsePromptParam] | NotGiven | NOT_GIVEN | |
prompt_cache_key | str | NotGiven | NOT_GIVEN | |
reasoning | Optional[Reasoning] | NotGiven | NOT_GIVEN | |
safety_identifier | str | NotGiven | NOT_GIVEN | |
service_tier | Optional[Literal[‘auto’, ‘default’, ‘flex’, ‘scale’, ‘priority’]] | NotGiven | NOT_GIVEN | |
store | Optional[bool] | NotGiven | NOT_GIVEN | |
stream_options | Optional[response_create_params.StreamOptions] | NotGiven | NOT_GIVEN | |
temperature | Optional[float] | NotGiven | NOT_GIVEN | |
text | ResponseTextConfigParam | NotGiven | NOT_GIVEN | |
top_logprobs | Optional[int] | NotGiven | NOT_GIVEN | |
top_p | Optional[float] | NotGiven | NOT_GIVEN | |
truncation | Optional[Literal[‘auto’, ‘disabled’]] | NotGiven | NOT_GIVEN | |
user | str | NotGiven | NOT_GIVEN | |
extra_headers | Optional | None | Use the following arguments if you need to pass additional parameters to the API that aren’t available via kwargs. The extra values given here take precedence over values defined on the client or passed to this method. |
extra_query | Query | None | None | |
extra_body | Body | None | None | |
timeout | float | httpx.Timeout | None | NotGiven | NOT_GIVEN |
Exported source
= "You have no more tool uses. Please summarize your findings. If you did not complete your goal please tell the user what further work needs to be done so they can choose how best to proceed." _final_prompt
Exported source
@patch
@delegates(Chat.__call__)
def toolloop(self:Chat,
# Prompt to pass to Claude
pr, =10, # Maximum number of tool requests to loop through
max_stepscallable=noop, # Function that stops loop if returns False
cont_func:=_final_prompt, # Prompt to add if last message is a tool call
final_prompt**kwargs):
"Add prompt `pr` to dialog and get a response from Claude, automatically following up with `tool_use` messages"
@save_iter
def _f(o):
= len(self.h)
init_n = self(pr, **kwargs)
r yield r
if len(self.last)>1: yield from self.last[1:]
for i in range(max_steps-1):
= self.h[-1]
x if not (isinstance(x, dict) and x['type']=='function_call_output'): break
= self(final_prompt if i==max_steps-2 else None, **kwargs)
r yield r
if len(self.last)>1: yield from self.last[1:]
if not cont_func(*self.h[-3:]): break
= self.h[init_n+1:]
o.value return _f()
Test Customer Dataset
def show(x):
if getattr(x, 'output_text', None): r = x
else: r = getattr(x,'output',x)
display(r)
= Chat(model, tools=tools)
chat = 'Can you tell me the email address for customer C1?'
pr = chat.toolloop(pr)
r = list(r)
res for o in r: show(o)
- Retrieving customer C1
The email for customer C1 is john@example.com. Need anything else about this customer?
- id: resp_6897e128b4448193bf249ab92f1de8780e7bd7a6ca08f04c
- created_at: 1754784041.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseReasoningItem(id=‘rs_6897e12998dc8193b861f1ead58b702e0e7bd7a6ca08f04c’, summary=[], type=‘reasoning’, content=None, encrypted_content=None, status=None), ResponseOutputMessage(id=‘msg_6897e12a73f4819387e6321b9d3acbd90e7bd7a6ca08f04c’, content=[ResponseOutputText(annotations=[], text=‘The email for customer C1 is john@example.com. Need anything else about this customer?’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘get_customer_info’, parameters={‘type’: ‘object’, ‘properties’: {‘customer_id’: {‘type’: ‘string’, ‘description’: ‘ID of the customer’}}, ‘required’: [‘customer_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=“Retrieves a customer’s information and their orders based on the customer ID”), FunctionTool(name=‘get_order_details’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Retrieves the details of a specific order based on the order ID’), FunctionTool(name=‘cancel_order’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order to cancel’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Cancels an order based on the provided order ID:- type: boolean’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘medium’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=327, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=24, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=351)
- user: None
- store: True
ResponseOutputMessage(id='msg_6897e12a73f4819387e6321b9d3acbd90e7bd7a6ca08f04c', content=[ResponseOutputText(annotations=[], text='The email for customer C1 is john@example.com. Need anything else about this customer?', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')
loop_outputs
loop_outputs (res)
Exported source
def loop_outputs(res):
return [dict(p) for o in res for p in ([o] if isinstance(o,dict) else getattr(o,'output',[]))]
= loop_outputs(res)
cl cl
[{'id': 'rs_6897e1248f908193a6cf91c7b9d24f180e7bd7a6ca08f04c',
'summary': [],
'type': 'reasoning',
'content': None,
'encrypted_content': None,
'status': None},
{'arguments': '{"customer_id":"C1"}',
'call_id': 'call_iSsBtRfj1j7BrbBfilN81sWt',
'name': 'get_customer_info',
'type': 'function_call',
'id': 'fc_6897e12505408193898876b3915318c40e7bd7a6ca08f04c',
'status': 'completed'},
{'type': 'function_call_output',
'call_id': 'call_iSsBtRfj1j7BrbBfilN81sWt',
'output': "{'name': 'John Doe', 'email': 'john@example.com', 'phone': '123-456-7890', 'orders': [{'id': 'O1', 'product': 'Widget A', 'quantity': 2, 'price': 19.99, 'status': 'Cancelled'}, {'id': 'O2', 'product': 'Gadget B', 'quantity': 1, 'price': 49.99, 'status': 'Cancelled'}]}"},
{'id': 'rs_6897e1268cb48193aeec6139bf6891d20e7bd7a6ca08f04c',
'summary': [],
'type': 'reasoning',
'content': None,
'encrypted_content': None,
'status': None},
{'id': 'msg_6897e1275b4c8193b2b2e8505b757b470e7bd7a6ca08f04c',
'content': [ResponseOutputText(annotations=[], text='The email address for customer C1 is john@example.com. Would you like any other details (phone number, orders, etc.)?', type='output_text', logprobs=[])],
'role': 'assistant',
'status': 'completed',
'type': 'message'}]
def disp_tc(x):
if x['type']=='function_call': return f"- `{x['name']}({x['arguments']})`\n"
elif x['type']=='function_call_output': return f" - `{x['output']}`\n\n"
else: return ''.join(o.text for o in x['content'])
# Markdown(''.join(map(disp_tc, cl)))
pprint(r.value)
[ResponseReasoningItem(id='rs_6897e12998dc8193b861f1ead58b702e0e7bd7a6ca08f04c', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseOutputMessage(id='msg_6897e12a73f4819387e6321b9d3acbd90e7bd7a6ca08f04c', content=[ResponseOutputText(annotations=[], text='The email for customer C1 is john@example.com. Need anything else about this customer?', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')]
= _get_orders_customers() orders, customers
= Chat(model, tools=tools)
chat = chat.toolloop('What is the status of order O2?')
r for o in r: display(getattr(o,'output',o))
- Retrieving order O2
[ResponseReasoningItem(id='rs_6897e152296c81938b18183a7b3a3f2b070371bcef68a1b8', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_nO3ZOyxkiOtKQTY6UMwDsp9d', name='get_order_details', type='function_call', id='fc_6897e152a24881938ecb7209c4408013070371bcef68a1b8', status='completed')]
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_nO3ZOyxkiOtKQTY6UMwDsp9d', name='get_order_details', type='function_call', id='fc_6897e152a24881938ecb7209c4408013070371bcef68a1b8', status='completed')
{'type': 'function_call_output',
'call_id': 'call_nO3ZOyxkiOtKQTY6UMwDsp9d',
'output': "{'id': 'O2', 'product': 'Gadget B', 'quantity': 1, 'price': 49.99, 'status': 'Processing'}"}
[ResponseOutputMessage(id='msg_6897e155231c8193946aeae2f3c7bf85070371bcef68a1b8', content=[ResponseOutputText(annotations=[], text='Order O2 (Gadget B, qty 1) is currently: Processing.', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')]
= chat.toolloop('Please cancel all orders for customer C1 for me.')
r = list(r)
res for o in res: display(getattr(o,'output',o))
- Retrieving customer C1
- Cancelling order O1
- Cancelling order O2
[ResponseReasoningItem(id='rs_6897e15728f4819396207358d0b5ff31070371bcef68a1b8', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"customer_id":"C1"}', call_id='call_pfwlNfsFTJxcwhO5MiDnKFCc', name='get_customer_info', type='function_call', id='fc_6897e15a33c481938b60a80c6c9c6e75070371bcef68a1b8', status='completed')]
ResponseFunctionToolCall(arguments='{"customer_id":"C1"}', call_id='call_pfwlNfsFTJxcwhO5MiDnKFCc', name='get_customer_info', type='function_call', id='fc_6897e15a33c481938b60a80c6c9c6e75070371bcef68a1b8', status='completed')
{'type': 'function_call_output',
'call_id': 'call_pfwlNfsFTJxcwhO5MiDnKFCc',
'output': "{'name': 'John Doe', 'email': 'john@example.com', 'phone': '123-456-7890', 'orders': [{'id': 'O1', 'product': 'Widget A', 'quantity': 2, 'price': 19.99, 'status': 'Shipped'}, {'id': 'O2', 'product': 'Gadget B', 'quantity': 1, 'price': 49.99, 'status': 'Processing'}]}"}
[ResponseReasoningItem(id='rs_6897e15c06048193a117eba237950a60070371bcef68a1b8', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"order_id":"O1"}', call_id='call_pGZ7LfguiTY7pTpE8IPPZDW3', name='cancel_order', type='function_call', id='fc_6897e15e276c8193a8bb5668615cb96d070371bcef68a1b8', status='completed'),
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_TqGkkG2TRTXlXvoiBTgwJlZx', name='cancel_order', type='function_call', id='fc_6897e15e5ef88193b8678bd20f6d0104070371bcef68a1b8', status='completed')]
ResponseFunctionToolCall(arguments='{"order_id":"O1"}', call_id='call_pGZ7LfguiTY7pTpE8IPPZDW3', name='cancel_order', type='function_call', id='fc_6897e15e276c8193a8bb5668615cb96d070371bcef68a1b8', status='completed')
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_TqGkkG2TRTXlXvoiBTgwJlZx', name='cancel_order', type='function_call', id='fc_6897e15e5ef88193b8678bd20f6d0104070371bcef68a1b8', status='completed')
{'type': 'function_call_output',
'call_id': 'call_pGZ7LfguiTY7pTpE8IPPZDW3',
'output': 'True'}
{'type': 'function_call_output',
'call_id': 'call_TqGkkG2TRTXlXvoiBTgwJlZx',
'output': 'True'}
[ResponseReasoningItem(id='rs_6897e15fd9388193acca7aca2463bb9d070371bcef68a1b8', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseOutputMessage(id='msg_6897e16302e48193ad31367b6139e859070371bcef68a1b8', content=[ResponseOutputText(annotations=[], text='I cancelled all orders for customer C1 (John Doe, john@example.com).\n\nResults:\n- Order O1 (Widget A, qty 2): Cancelled successfully.\n- Order O2 (Gadget B, qty 1): Cancelled successfully.\n\nWould you like me to start refunds, send a cancellation confirmation email, or do anything else for John Doe?', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')]
ResponseOutputMessage(id='msg_6897e16302e48193ad31367b6139e859070371bcef68a1b8', content=[ResponseOutputText(annotations=[], text='I cancelled all orders for customer C1 (John Doe, john@example.com).\n\nResults:\n- Order O1 (Widget A, qty 2): Cancelled successfully.\n- Order O2 (Gadget B, qty 1): Cancelled successfully.\n\nWould you like me to start refunds, send a cancellation confirmation email, or do anything else for John Doe?', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')
# cl = loop_outputs(res)
# Markdown('\n'.join(map(disp_tc, cl)))
for o in chat.toolloop('What is the status of order O2?'): display(o)
- Retrieving order O2
- id: resp_6897e16824308193863428bf4240a87c070371bcef68a1b8
- created_at: 1754784104.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseReasoningItem(id=‘rs_6897e168e56c8193a92dbe9d9ac28d8c070371bcef68a1b8’, summary=[], type=‘reasoning’, content=None, encrypted_content=None, status=None), ResponseFunctionToolCall(arguments=‘{“order_id”:“O2”}’, call_id=‘call_s79z5383Uxatc6sNpm33VEl1’, name=‘get_order_details’, type=‘function_call’, id=‘fc_6897e16a30708193a4f46fa44c3bb203070371bcef68a1b8’, status=‘completed’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘get_customer_info’, parameters={‘type’: ‘object’, ‘properties’: {‘customer_id’: {‘type’: ‘string’, ‘description’: ‘ID of the customer’}}, ‘required’: [‘customer_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=“Retrieves a customer’s information and their orders based on the customer ID”), FunctionTool(name=‘get_order_details’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Retrieves the details of a specific order based on the order ID’), FunctionTool(name=‘cancel_order’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order to cancel’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Cancels an order based on the provided order ID:- type: boolean’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘medium’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=532, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=87, output_tokens_details=OutputTokensDetails(reasoning_tokens=64), total_tokens=619)
- user: None
- store: True
ResponseFunctionToolCall(arguments='{"order_id":"O2"}', call_id='call_s79z5383Uxatc6sNpm33VEl1', name='get_order_details', type='function_call', id='fc_6897e16a30708193a4f46fa44c3bb203070371bcef68a1b8', status='completed')
{'type': 'function_call_output',
'call_id': 'call_s79z5383Uxatc6sNpm33VEl1',
'output': "{'id': 'O2', 'product': 'Gadget B', 'quantity': 1, 'price': 49.99, 'status': 'Cancelled'}"}
Order O2 (Gadget B, qty 1) is currently: Cancelled.
- id: resp_6897e16b5fa88193b00c69f98e9dd053070371bcef68a1b8
- created_at: 1754784107.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseOutputMessage(id=‘msg_6897e16be6248193aa6c8c7968793ee4070371bcef68a1b8’, content=[ResponseOutputText(annotations=[], text=‘Order O2 (Gadget B, qty 1) is currently: Cancelled.’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘get_customer_info’, parameters={‘type’: ‘object’, ‘properties’: {‘customer_id’: {‘type’: ‘string’, ‘description’: ‘ID of the customer’}}, ‘required’: [‘customer_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=“Retrieves a customer’s information and their orders based on the customer ID”), FunctionTool(name=‘get_order_details’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Retrieves the details of a specific order based on the order ID’), FunctionTool(name=‘cancel_order’, parameters={‘type’: ‘object’, ‘properties’: {‘order_id’: {‘type’: ‘string’, ‘description’: ‘ID of the order to cancel’}}, ‘required’: [‘order_id’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Cancels an order based on the provided order ID:- type: boolean’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘medium’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=685, input_tokens_details=InputTokensDetails(cached_tokens=535), output_tokens=22, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=707)
- user: None
- store: True
Test Math Example
def add(x: int, y: int) -> int:
"adds x and y."
return x + y
def mul(x: int, y: int) -> int:
"multiplies x and y."
return x * y
= Chat(model, tools=[add, mul], **chatkw)
chat = 'Can you add 1258585825128 to 34959234595, multiply by 93, and then add (-12439149)?'
pr = chat.toolloop(pr)
r for o in r: show(o)
[ResponseReasoningItem(id='rs_6897e18c5388819190a54e0ce1441bdb015feb53bd0dd55d', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":1258585825128,"y":34959234595}', call_id='call_ueQGOLD99pG6r2sGdgsVKlw6', name='add', type='function_call', id='fc_6897e18e8f88819191645a755cda603e015feb53bd0dd55d', status='completed')]
ResponseFunctionToolCall(arguments='{"x":1258585825128,"y":34959234595}', call_id='call_ueQGOLD99pG6r2sGdgsVKlw6', name='add', type='function_call', id='fc_6897e18e8f88819191645a755cda603e015feb53bd0dd55d', status='completed')
{'type': 'function_call_output',
'call_id': 'call_ueQGOLD99pG6r2sGdgsVKlw6',
'output': '1293545059723'}
[ResponseReasoningItem(id='rs_6897e19014fc81919b186f766cb9b0b7015feb53bd0dd55d', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":1293545059723,"y":93}', call_id='call_3bMfuqmgxtFi73cSXwFpypFP', name='mul', type='function_call', id='fc_6897e190e7b88191a01ac2531eb232a4015feb53bd0dd55d', status='completed')]
ResponseFunctionToolCall(arguments='{"x":1293545059723,"y":93}', call_id='call_3bMfuqmgxtFi73cSXwFpypFP', name='mul', type='function_call', id='fc_6897e190e7b88191a01ac2531eb232a4015feb53bd0dd55d', status='completed')
{'type': 'function_call_output',
'call_id': 'call_3bMfuqmgxtFi73cSXwFpypFP',
'output': '120299690554239'}
[ResponseReasoningItem(id='rs_6897e192bbbc8191bf48ca20d003dfc1015feb53bd0dd55d', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":120299690554239,"y":-12439149}', call_id='call_ildkWrO6EHnC0jtBFXAq93P5', name='add', type='function_call', id='fc_6897e1935f7481918b1d79751e99aede015feb53bd0dd55d', status='completed')]
ResponseFunctionToolCall(arguments='{"x":120299690554239,"y":-12439149}', call_id='call_ildkWrO6EHnC0jtBFXAq93P5', name='add', type='function_call', id='fc_6897e1935f7481918b1d79751e99aede015feb53bd0dd55d', status='completed')
{'type': 'function_call_output',
'call_id': 'call_ildkWrO6EHnC0jtBFXAq93P5',
'output': '120299678115090'}
120,299,678,115,090
- id: resp_6897e19438d081919b9c36459cc8cd50015feb53bd0dd55d
- created_at: 1754784148.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseReasoningItem(id=‘rs_6897e194c62481918b6ac433e9648d01015feb53bd0dd55d’, summary=[], type=‘reasoning’, content=None, encrypted_content=None, status=None), ResponseOutputMessage(id=‘msg_6897e195ccbc8191806147fc7db8fe8e015feb53bd0dd55d’, content=[ResponseOutputText(annotations=[], text=‘120,299,678,115,090’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘add’, parameters={‘type’: ‘object’, ‘properties’: {‘x’: {‘type’: ‘integer’, ‘description’: ’‘}, ’y’: {‘type’: ‘integer’, ‘description’: ’‘}}, ’required’: [‘x’, ‘y’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘adds x and y.:- type: integer’), FunctionTool(name=‘mul’, parameters={‘type’: ‘object’, ‘properties’: {‘x’: {‘type’: ‘integer’, ‘description’: ’‘}, ’y’: {‘type’: ‘integer’, ‘description’: ’‘}}, ’required’: [‘x’, ‘y’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘multiplies x and y.:- type: integer’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘medium’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘medium’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=496, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=79, output_tokens_details=OutputTokensDetails(reasoning_tokens=64), total_tokens=575)
- user: None
- store: True
ResponseOutputMessage(id='msg_6897e195ccbc8191806147fc7db8fe8e015feb53bd0dd55d', content=[ResponseOutputText(annotations=[], text='120,299,678,115,090', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')
1258585825128 + 34959234595) * 93 - 12439149 (
120299678115090
= Chat(model, tools=[add, mul], **chatkw)
chat = chat.toolloop(pr, stream=True)
r for o in r:
if isinstance(o, dict): print('- ', o)
else:
for p in o: print(p, end='')
if hasattr(o, 'value'): show(o.value)
[ResponseReasoningItem(id='rs_6897e1c5d79081a3ae88e03578f661a90c8460ccb833b112', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":1258585825128,"y":34959234595}', call_id='call_SdIaAHdmOEYB4tAU7E6vh3p4', name='add', type='function_call', id='fc_6897e1c6170081a3b97d0966c86325730c8460ccb833b112', status='completed')]
('arguments', '{"x":1258585825128,"y":34959234595}')('call_id', 'call_SdIaAHdmOEYB4tAU7E6vh3p4')('name', 'add')('type', 'function_call')('id', 'fc_6897e1c6170081a3b97d0966c86325730c8460ccb833b112')('status', 'completed')- {'type': 'function_call_output', 'call_id': 'call_SdIaAHdmOEYB4tAU7E6vh3p4', 'output': '1293545059723'}
[ResponseReasoningItem(id='rs_6897e1c72d0481a38ffd9daf156d758e0c8460ccb833b112', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":1293545059723,"y":93}', call_id='call_kjtm1Q8cccNUleOw1msfEgmK', name='mul', type='function_call', id='fc_6897e1c77bac81a3baf3e35799923fc80c8460ccb833b112', status='completed')]
('arguments', '{"x":1293545059723,"y":93}')('call_id', 'call_kjtm1Q8cccNUleOw1msfEgmK')('name', 'mul')('type', 'function_call')('id', 'fc_6897e1c77bac81a3baf3e35799923fc80c8460ccb833b112')('status', 'completed')- {'type': 'function_call_output', 'call_id': 'call_kjtm1Q8cccNUleOw1msfEgmK', 'output': '120299690554239'}
[ResponseReasoningItem(id='rs_6897e1c87c7081a38c9faf505ed5e29a0c8460ccb833b112', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"x":120299690554239,"y":-12439149}', call_id='call_cuKZQ6Oa3Lc2P75mDEx0jugE', name='add', type='function_call', id='fc_6897e1c8c5e481a3a9bb8a58bda392740c8460ccb833b112', status='completed')]
('arguments', '{"x":120299690554239,"y":-12439149}')('call_id', 'call_cuKZQ6Oa3Lc2P75mDEx0jugE')('name', 'add')('type', 'function_call')('id', 'fc_6897e1c8c5e481a3a9bb8a58bda392740c8460ccb833b112')('status', 'completed')- {'type': 'function_call_output', 'call_id': 'call_cuKZQ6Oa3Lc2P75mDEx0jugE', 'output': '120299678115090'}
120,299,678,115,090
120,299,678,115,090
- id: resp_6897e1c9821081a3a1f3648c7b2bf4320c8460ccb833b112
- created_at: 1754784201.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseOutputMessage(id=‘msg_6897e1ca77d081a3b2636d387eea6f370c8460ccb833b112’, content=[ResponseOutputText(annotations=[], text=‘120,299,678,115,090’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘add’, parameters={‘type’: ‘object’, ‘properties’: {‘x’: {‘type’: ‘integer’, ‘description’: ’‘}, ’y’: {‘type’: ‘integer’, ‘description’: ’‘}}, ’required’: [‘x’, ‘y’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘adds x and y.:- type: integer’), FunctionTool(name=‘mul’, parameters={‘type’: ‘object’, ‘properties’: {‘x’: {‘type’: ‘integer’, ‘description’: ’‘}, ’y’: {‘type’: ‘integer’, ‘description’: ’‘}}, ’required’: [‘x’, ‘y’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘multiplies x and y.:- type: integer’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘minimal’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘low’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=278, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=13, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=291)
- user: None
- store: True
Error Conditions: Out of Iterations, Exception During Tool Invocation
def mydiv(a:float, b:float):
"Divide two numbers"
return a / b
= Chat(model, tools=[mydiv], **chatkw)
chat = chat.toolloop('Please calculate this sequence using your tools: 43/23454; 652/previous result; 6843/previous result; 321/previous result', max_steps=2)
r for o in r: show(o)
[ResponseReasoningItem(id='rs_6897e1e3f7d08190819e22b16bd62a6b047a40cd4df49f91', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"a":43,"b":23454}', call_id='call_1EchGcZOxUCwzWFmPG6ZbagQ', name='mydiv', type='function_call', id='fc_6897e1e44ac08190819052abd2ee034a047a40cd4df49f91', status='completed'),
ResponseFunctionToolCall(arguments='{"a":652,"b":0}', call_id='call_VzY6kLA8EYBQWLQyM1P7Uu39', name='mydiv', type='function_call', id='fc_6897e1e4736c819093be6536512c13f8047a40cd4df49f91', status='completed'),
ResponseFunctionToolCall(arguments='{"a":6843,"b":0}', call_id='call_Ifuh3smqGl5gBCHuqPOyAwWC', name='mydiv', type='function_call', id='fc_6897e1e499788190adcc563eb10050d6047a40cd4df49f91', status='completed'),
ResponseFunctionToolCall(arguments='{"a":321,"b":0}', call_id='call_Ib36ay9PqhAms1U200xMh3AB', name='mydiv', type='function_call', id='fc_6897e1e4c6f48190b4715a9fcfc33d4e047a40cd4df49f91', status='completed')]
ResponseFunctionToolCall(arguments='{"a":43,"b":23454}', call_id='call_1EchGcZOxUCwzWFmPG6ZbagQ', name='mydiv', type='function_call', id='fc_6897e1e44ac08190819052abd2ee034a047a40cd4df49f91', status='completed')
ResponseFunctionToolCall(arguments='{"a":652,"b":0}', call_id='call_VzY6kLA8EYBQWLQyM1P7Uu39', name='mydiv', type='function_call', id='fc_6897e1e4736c819093be6536512c13f8047a40cd4df49f91', status='completed')
ResponseFunctionToolCall(arguments='{"a":6843,"b":0}', call_id='call_Ifuh3smqGl5gBCHuqPOyAwWC', name='mydiv', type='function_call', id='fc_6897e1e499788190adcc563eb10050d6047a40cd4df49f91', status='completed')
ResponseFunctionToolCall(arguments='{"a":321,"b":0}', call_id='call_Ib36ay9PqhAms1U200xMh3AB', name='mydiv', type='function_call', id='fc_6897e1e4c6f48190b4715a9fcfc33d4e047a40cd4df49f91', status='completed')
{'type': 'function_call_output',
'call_id': 'call_1EchGcZOxUCwzWFmPG6ZbagQ',
'output': '0.001833375969983798'}
{'type': 'function_call_output',
'call_id': 'call_VzY6kLA8EYBQWLQyM1P7Uu39',
'output': 'Traceback (most recent call last):\n File "/Users/jhoward/aai-ws/toolslm/toolslm/funccall.py", line 203, in call_func\n try: return func(**fc_inputs)\n ^^^^^^^^^^^^^^^^^\n File "/var/folders/51/b2_szf2945n072c0vj2cyty40000gn/T/ipykernel_23490/246724137.py", line 3, in mydiv\n return a / b\n ~~^~~\nZeroDivisionError: division by zero\n'}
{'type': 'function_call_output',
'call_id': 'call_Ifuh3smqGl5gBCHuqPOyAwWC',
'output': 'Traceback (most recent call last):\n File "/Users/jhoward/aai-ws/toolslm/toolslm/funccall.py", line 203, in call_func\n try: return func(**fc_inputs)\n ^^^^^^^^^^^^^^^^^\n File "/var/folders/51/b2_szf2945n072c0vj2cyty40000gn/T/ipykernel_23490/246724137.py", line 3, in mydiv\n return a / b\n ~~^~~\nZeroDivisionError: division by zero\n'}
{'type': 'function_call_output',
'call_id': 'call_Ib36ay9PqhAms1U200xMh3AB',
'output': 'Traceback (most recent call last):\n File "/Users/jhoward/aai-ws/toolslm/toolslm/funccall.py", line 203, in call_func\n try: return func(**fc_inputs)\n ^^^^^^^^^^^^^^^^^\n File "/var/folders/51/b2_szf2945n072c0vj2cyty40000gn/T/ipykernel_23490/246724137.py", line 3, in mydiv\n return a / b\n ~~^~~\nZeroDivisionError: division by zero\n'}
I successfully computed the first division: - 43 / 23454 = 0.001833375969983798
I was then instructed to divide 652 by the “previous result” and continue chaining divisions, but my subsequent tool calls failed because I attempted to divide by zero (the tool calls were given invalid b=0), so I could not complete the remaining steps.
To finish the sequence you want, the next steps are: 1) Compute 652 / 0.001833375969983798 = 355,554.879… (approx) 2) Compute 6843 / (result of step 1) = 0.019247… (approx) 3) Compute 321 / (result of step 2) = 16,683.6… (approx)
If you want, I can now compute those three remaining divisions directly (no tools required) and give exact or rounded results. Which would you prefer?
- id: resp_6897e1e562908190a3ecc40a07d57645047a40cd4df49f91
- created_at: 1754784229.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseReasoningItem(id=‘rs_6897e1e5fafc81909e1cbc28898ba791047a40cd4df49f91’, summary=[], type=‘reasoning’, content=None, encrypted_content=None, status=None), ResponseOutputMessage(id=‘msg_6897e1e61cdc81909f47e73a5337ebec047a40cd4df49f91’, content=[ResponseOutputText(annotations=[], text=‘I successfully computed the first division:- 43 / 23454 = 0.001833375969983798was then instructed to divide 652 by the “previous result” and continue chaining divisions, but my subsequent tool calls failed because I attempted to divide by zero (the tool calls were given invalid b=0), so I could not complete the remaining steps.finish the sequence you want, the next steps are:) Compute 652 / 0.001833375969983798 = 355,554.879… (approx)) Compute 6843 / (result of step 1) = 0.019247… (approx)) Compute 321 / (result of step 2) = 16,683.6… (approx)you want, I can now compute those three remaining divisions directly (no tools required) and give exact or rounded results. Which would you prefer?’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘mydiv’, parameters={‘type’: ‘object’, ‘properties’: {‘a’: {‘type’: ‘number’, ‘description’: ’‘}, ’b’: {‘type’: ‘number’, ‘description’: ’‘}}, ’required’: [‘a’, ‘b’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Divide two numbers’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘minimal’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘low’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=603, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=199, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=802)
- user: None
- store: True
ResponseOutputMessage(id='msg_6897e1e61cdc81909f47e73a5337ebec047a40cd4df49f91', content=[ResponseOutputText(annotations=[], text='I successfully computed the first division:\n- 43 / 23454 = 0.001833375969983798\n\nI was then instructed to divide 652 by the "previous result" and continue chaining divisions, but my subsequent tool calls failed because I attempted to divide by zero (the tool calls were given invalid b=0), so I could not complete the remaining steps.\n\nTo finish the sequence you want, the next steps are:\n1) Compute 652 / 0.001833375969983798 = 355,554.879... (approx)\n2) Compute 6843 / (result of step 1) = 0.019247... (approx)\n3) Compute 321 / (result of step 2) = 16,683.6... (approx)\n\nIf you want, I can now compute those three remaining divisions directly (no tools required) and give exact or rounded results. Which would you prefer?', type='output_text', logprobs=[])], role='assistant', status='completed', type='message')
This tests raise_on_err=False
change to toolslm.call_func
invocation. We should see this return an error as a string instead of crash:
= Chat(model, tools=[mydiv], **chatkw)
chat = chat.toolloop('Try dividing 1 by 0 and see what the error result is')
r for o in r: show(o)
[ResponseReasoningItem(id='rs_6897e1e939d48193a63805a335b1a33304d3e564186ebe0a', summary=[], type='reasoning', content=None, encrypted_content=None, status=None),
ResponseFunctionToolCall(arguments='{"a":1,"b":0}', call_id='call_dxZkdTpNuZH6tWjycwgHZeo9', name='mydiv', type='function_call', id='fc_6897e1e999a08193b7f7af1bc2c213ec04d3e564186ebe0a', status='completed')]
ResponseFunctionToolCall(arguments='{"a":1,"b":0}', call_id='call_dxZkdTpNuZH6tWjycwgHZeo9', name='mydiv', type='function_call', id='fc_6897e1e999a08193b7f7af1bc2c213ec04d3e564186ebe0a', status='completed')
{'type': 'function_call_output',
'call_id': 'call_dxZkdTpNuZH6tWjycwgHZeo9',
'output': 'Traceback (most recent call last):\n File "/Users/jhoward/aai-ws/toolslm/toolslm/funccall.py", line 203, in call_func\n try: return func(**fc_inputs)\n ^^^^^^^^^^^^^^^^^\n File "/var/folders/51/b2_szf2945n072c0vj2cyty40000gn/T/ipykernel_23490/246724137.py", line 3, in mydiv\n return a / b\n ~~^~~\nZeroDivisionError: division by zero\n'}
The function raised a ZeroDivisionError with message: “division by zero”.
- id: resp_6897e1eac59c81938b9c646c2a8c34ef04d3e564186ebe0a
- created_at: 1754784234.0
- error: None
- incomplete_details: None
- instructions: None
- metadata: {}
- model: gpt-5-mini-2025-08-07
- object: response
- output: [ResponseOutputMessage(id=‘msg_6897e1eb389081939fdcfd37dbf877e404d3e564186ebe0a’, content=[ResponseOutputText(annotations=[], text=‘The function raised a ZeroDivisionError with message: “division by zero”.’, type=‘output_text’, logprobs=[])], role=‘assistant’, status=‘completed’, type=‘message’)]
- parallel_tool_calls: True
- temperature: 1.0
- tool_choice: auto
- tools: [FunctionTool(name=‘mydiv’, parameters={‘type’: ‘object’, ‘properties’: {‘a’: {‘type’: ‘number’, ‘description’: ’‘}, ’b’: {‘type’: ‘number’, ‘description’: ’‘}}, ’required’: [‘a’, ‘b’], ‘additionalProperties’: False}, strict=True, type=‘function’, description=‘Divide two numbers’)]
- top_p: 1.0
- background: False
- max_output_tokens: 4096
- max_tool_calls: None
- previous_response_id: None
- prompt: None
- prompt_cache_key: None
- reasoning: Reasoning(effort=‘minimal’, generate_summary=None, summary=None)
- safety_identifier: None
- service_tier: default
- status: completed
- text: ResponseTextConfig(format=ResponseFormatText(type=‘text’), verbosity=‘low’)
- top_logprobs: 0
- truncation: disabled
- usage: ResponseUsage(input_tokens=220, input_tokens_details=InputTokensDetails(cached_tokens=0), output_tokens=19, output_tokens_details=OutputTokensDetails(reasoning_tokens=0), total_tokens=239)
- user: None
- store: True